MSXPad HELP Index

MSXPad Setup

Creating your first program

Your own template

Converting Pictures to MSX

Project Properties

Compiling to CHN

Pascal Language Reference

The INCLUDE files

Maybe…

Input

· Keyboard

· Joystick

· Mouse?

Graphics

· Converting Graphics (done)

· Using Sprites

· Copy command

Sounds

· PSG

· FM

MSXPad Setup

When the program starts for the first time, this screen will show up:

[image: image1.jpg]
This screen is the projects templates dialog. For now, don’t bother about it, just hit cancel. After that, the program will just sit there. You have to configure it, so you can use it correctly. On the menu, click on EDIT->PREFERENCES

[image: image2.jpg]
Then the following screen will appear:

[image: image3.jpg]
MSXPad works along with emulators, to make the development process easier and faster than on a real MSX. So, for this program to work 100%, you should have a working emulator installed on your computer.

After you have your program ready to compile, MSXPad will automatically generate a DSK file, and will run the emulator using that file. So, let’s setup MSXPad so it can work correctly.

First click on the upper “Browse” button, which will open a dialog box, asking you where is the emulator you want to use with MSXPad. Any emulator that accepts command line arguments can be used. Select the emulator “.exe” file and the path to the emulator should appear on the textbox above the button.

Next, set the Command line on the textbox just below. The default command line should work on most emulators (on openMSX you should also specify a machine to emulate). The %dsk should be present, because that will be changed by the program to the dsk file generated at the specified location.

Now, set the location where the dsk file will be generated.To do this click the other browse button and select the path. We are almost done.

MSXPad uses the .tpj extension on the generated projects, so you can associate them with the program. If you wish to do so, then mark the checkbox “Register .tpj extension with MSXPad”, so if you double click on any .tpj file, it will automatically open on MSXPad.

Check “Autosave when changing files”, or everytime you change from the main pascal file to include files and you dont save first, all changes will be lost.

If you don’t want that template screen appearing everytime MSXPad starts up, check the last checkbox “Don’t open the new project dialog at startup”.

Click OK and the program should be working now.

Creating your first program

To create your first program, click on the menu on FILE->NEW->PROJECT as indicated below:

[image: image4.jpg]
This will bring up the New projects template dialog, with 2 options:

[image: image5.jpg]
· Game: this will create a project with several include files pre-programmed, to create na MSX2 game.

· Normal: this will create an empty project for you, withou any pre-included file.

Juse select one of the two and hit the OPEN button. A dialog will open asking the name of the project file.

[image: image6.jpg]
It is recommended that you create a directory for every new project you start. This directory should never have more than 720kb of files in it, otherwise the program will not be able to generate correctly a dsk file and run it on an emulator.

Click on SAVE and the basic program will be generated. If you choose a GAME project, you should get na screen like this:

[image: image7.jpg]
This screen is divided in two parts. The left part shows the project structure. The right part shows the code of the file selected on the left part.

{ $i file.inc } means that at that point, an include pascal file will be inserted. Any include file inserted will show up on the left part of the screen, on the project structure (if they don't then click on FILE->REFRESH PROJECT TREE). Click the + sign at the side of MYTEST.PAS and all the include files will show up.

[image: image8.jpg]
If you click on any of those include files, they will show up on the right side of the screen.

[image: image9.jpg]
Now let’s try it out, with a simple hello world. Click again on the MYTEST.PAS file on the left side of the screen, this will take you back to the main code. Insert the following code where you see the “begin… end” part:

Begin

 Screen(0);

 Writeln(‘Hellow world’);

 Writeln(‘SLotman rox!’);

End.

The program will look like this:

[image: image10.jpg]
That’s because MSXPad recognizes the Pascal commands and colors them. Now press F5 or click on the menu on FILE->COMPILE AND RUN to execute your program. The chosen emulator should start, and you will be seeing the DOS prompt, something like A:>

Then to execute your program type MYTEST and hit ENTER. You should see an screen like this:

[image: image11.jpg]
If you don’t, then check your setup again.

That’s the basic working of MSXPad. Now you can start creating your own programs for MSX! Study the given include files, they have a lot of functions pre-built to make your work easier.

Your own templates

Projects templates are the most versatile thing you can use on MSXPad. You can create templates for specific tasks, like for text mode programs, for MSX1 games, and so on.

To create a new template is very simple. Where you installed MSXPad you should find a directory called “Projects”. Inside this directory there are two folders, GAME and NORMAL.

[image: image12.jpg]
Now, let’s imagine you have a file called “MSX1.inc” where you have all your MSX1 routines, and you want to make na MSX1 template. Go to the projects directory and create another folder, named MSX1 (the folder name is what will show up on the templates dialog). Then, copy your “MSX1.inc” file to this folder.

Now, go over the game folder and copy the files “command.com” and “msxdos.sys” to your msx1 folder. Those files are required if you want to run your compiled program on any MSX.

To finish up the template, create a new file called MSX1.pas (this file should have the same name as the folder it is, with the .pas extension). To have your MSX1.inc included automatically in the project, MSX1.pas should be like this:

{$i msx1.inc }

begin

end.

You should add na {$I } directive to every file you want to include on the template.

Save this file. Now let’s test our first simple template! Open MSXPad, and if the template dialog does not show, click on FILE->NEW->PROJECT.

[image: image13.jpg]
And there it is your MSX1 template on the New Project dialog! Click on Open and you will see your project on MSXPad. Easy isn’t it?

Converting pictures to MSX

Let's see here how easy it is to convert PC pictures to MSX with MSXPad.

MSXPad can convert BMP files to screens 5 and 8. To convert BMP files to screen 5 you should have a 16 color BMP (since screen 5 uses only 16 colors). To convert to screen 8, the image should have 256 colors. In both cases the images should have 256 points in width and 212 points in height.

To open the image converter, click on TOOLS->IMAGE CONVERTER. A new window will popup.

[image: image14.jpg]
Now click on FILE->OPEN->PC IMAGE. The program will ask you to point to a BMP File

[image: image15.jpg]
The BMP file will then be loaded and showed up on the screen. Now you can save it as CC5 file (so you can load the image on BASIC with the COPY command) or you can save it as .GFX, which is a raw file format that can be loaded into your Pascal program. So, click on FILE->SAVE->Turbo Pascal Screen (GFX) and the program will prompt you for a filename.

[image: image16.jpg]
Choose a name and click on SAVE. Your .GFX image will be generated. Now let's create a small program to load it and see the result as it will appear on MSX.

Go to FILE->NEW->PROJECT and select GAME. On the "begin…end" part put the following code:

(this program assumes you converted a picture to Screen 5, and name it SCRTEST.GFX)

{$i misc.inc}

{$i pal.inc }

{$i MsxDskIO.inc}

{$i msx.inc }

{$i sprite.inc}

begin

 Screen(5);

 LoadGraphic('SCRTEST.GFX', 256, 212, 0,0,0,0,5);

 Repeat until keypressed;

 Screen(0);

end.

This program should load your image on screen. The LoadGraphic command works like this:

1 - The filename of the image to be loaded.

2 - The image width.

3 - The image height.

4 and 5 - The x and y coordinates on screen where the graphic will be drawn

6 - In which page the graphic will be loaded

7 - This one is the logical operation performed (OR, AND, XOR, etc)

8 - The screen mode (5 since we are loading the graphic on screen 5).

The rest of the program just waits for any key to be pressed, and then goes back to text mode. Let's see now the picture loaded on MSX:

[image: image17.jpg]
Wait! That's all wrong! And I didn't took any pills!! What happened to all the colors?!

The color problem is normal. It's because you didn't set the palette on MSX, so it uses it's default one, and so, the colors appears all wrong. If your image was for screen 8, everything would be allright, since screen 8 has a fixed palette, and MSXPad convert your image from any palette to this fixed one… but on screen 5 it will be a problem. Don't worry, let's see how to fix this now.

First go back to MSXPad menu, and click TOOLS->PALETTE CONVERTER

[image: image18.jpg]
And a new window will show up. What this program does is to take the color of any BMP file (or from a Paint Shop Pro .PAL file) and convert it to MSX.

[image: image19.jpg]
So, first we click on the OPEN button to load a BMP file (dont forget to change the file type to be loaded on the bottom of the open dialog)

[image: image20.jpg]
After the image is loaded, click the CONVERT button. The converted palette will show up on the textbox just below. You have now two options, Click "COPY TO CLIPBOARD" button, and the code will be copied to the clipboard area of windows, or to Click "INSERT ON CODE" and the palette will be inserted directly into your code *WHERE YOUR CURSOR IS AT THE MOMENT*.

[image: image21.jpg]
So, do not close this window, move it over to any side, and let's go back to our code.

begin

Screen(5);

LoadGraphic('SCRTEST.GFX', 256, 212, 0,0,0,0,5);

Repeat until keypressed;

Screen(0);

end.

Let's insert a PROCEDURE (a routine that executes some code) on top of this program. The program should look now like this:

Procedure SETPAL;

begin

 |

end;

begin

 Screen(5);

 LoadGraphic('SCRTEST.GFX', 256, 212, 0,0,0,0,5);

 Repeat until keypressed;

 Screen(0);

end.

Let the cursor between the begin..end; of SETPAL. Now, go back to the palette converter screen and hit the INSERT ON CODE button. The program will look like this:

Procedure SETPAL;

begin

SetPalette(00,7,0,7);

SetPalette(01,0,0,3);

SetPalette(02,1,3,1);

SetPalette(03,0,0,5);

SetPalette(04,0,4,0);

SetPalette(05,0,6,0);

SetPalette(06,1,4,7);

SetPalette(07,1,7,7);

SetPalette(08,3,4,4);

SetPalette(09,6,0,0);

SetPalette(10,6,3,3);

SetPalette(11,4,4,1);

SetPalette(12,7,7,1);

SetPalette(13,7,6,3);

SetPalette(14,0,0,0);

SetPalette(15,6,7,7);

end;

begin

 Screen(5);

 LoadGraphic('SCRTEST.GFX', 256, 212, 0,0,0,0,5);

 Repeat until keypressed;

 Screen(0);

end.

Now, just call this procedure from the main code:

begin

 Screen(5);

 SETPAL;

 LoadGraphic('SCRTEST.GFX', 256, 212, 0,0,0,0,5);

 Repeat until keypressed;

 Screen(0);

end.

And the screen now will be perfect!

[image: image22.jpg]
But… there is another way: inserting the palette hardcoded is easy, but consumes memory. If you want, you can also save the palette to file (using the SAVE TO FILE button - New in MSXPad 1.6). This will generate a .pl5 file which is a PALETTE file, in the same format used by Graph Saurus (an MSX2 graphic editor) and that can be loaded on BASIC with bload"",s. This same PL5 file can be loaded in Pascal with the following procedure:

LoadPal('filename.pl5',1);

This procedure is pre-defined in PAL.INC, an include file that works with palettes. The first parameter should allways be the palette filename, the second one defines if the palette will be loaded directly on VRAM (and so the palette is set on screen) or if the palette should stay on RAM, waiting to be "activated". Any value different from zero will load the palette file and activate it. The current palette is allways stored in the CurPal variable, declared on PAL.INC. Check the include for more info on this.

So your program should get like this now:

begin

 Screen(5);

 LoadPal('SCRTEST.PL5',1);

 LoadGraphic('SCRTEST.GFX', 256, 212, 0,0,0,0,5);

 Repeat until keypressed;

 Screen(0);

end.

Without the SETPAL procedure. The program gets smaller and much cleaner.

